Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation
نویسندگان
چکیده
The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process.
منابع مشابه
Anhydrobiosis without trehalose in bdelloid rotifers.
Eukaryotes able to withstand desiccation enter a state of suspended animation known as anhydrobiosis, which is thought to require accumulation of the non-reducing disaccharides trehalose (animals, fungi) and sucrose (plants), acting as water replacement molecules and vitrifying agents. We now show that clonal populations of bdelloid rotifers Philodina roseola and Adineta vaga exhibit excellent ...
متن کاملResponse to Signorovitch et al.
Signorovitch et al.[1] comment that an Oenothera-like meiosis [2] could produce a pattern similar to what we observed in our study of natural isolates of the bdelloid rotifer Adineta vaga, which we attributed to horizontal gene transfers (HGTs) [3]. Indeed, our HGT hypothesis appears at first sight difficult to conciliate with their observation of a congruent pattern of allele sharing at four l...
متن کاملForeign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae.
Bdelloid rotifers are aquatic micro-invertebrates with the ability to survive extreme desiccation, or anhydrobiosis, at any life stage. To gain insight into the molecular mechanisms used by bdelloids during anhydrobiosis, we constructed a cDNA library enriched for genes that are upregulated in Adineta ricciae 24 h after onset of dehydration. Resulting expressed sequence tags (ESTs) were analyse...
متن کاملDegenerate tetraploidy was established before bdelloid rotifer families diverged.
Rotifers of Class Bdelloidea are abundant freshwater invertebrates known for their remarkable ability to survive desiccation and their lack of males and meiosis. Sequencing and annotation of approximately 50-kb regions containing the four hsp82 heat shock genes of the bdelloid Philodina roseola, each located on a separate chromosome, have suggested that its genome is that of a degenerate tetrap...
متن کاملEvidence for meiotic sex in bdelloid rotifers
In their study of genetic exchange in the bdelloid rotifer Adineta vaga, Debortoli et al. [1] conclude that the patchwork pattern of allele sharing among three individuals in the genomic regions they examined is "…unlikely to arise in cases of PTH (Oenothera-like) meiosis since haplotypes are transferred as entire blocks…" and therefore that "Genetic exchange among bdelloid rotifers is more lik...
متن کامل